Как сделать активный или пассивный фильтр низких частот для сабвуфера своими руками

ВВЕДЕНИЕ

В наше время высоких технологий всё более распространёнными становятся нелинейные нагрузки (частотные преобразователи, инверторы, системы бесперебойного питания, импульсные источники питания, люминесцентные и светодиодные лампы и т.п.). Из-за таких изменений в структуре нагрузки основной темой в этом десятилетии стали качество электроэнергии и снижение уровня гармоник. Проблемы, вызываемые гармониками, такие как перегрев трансформаторов и вращающихся машин, перегрузка проводников нейтрали, выход из строя конденсаторных батарей и т.п., приводят к повышению эксплуатационных расходов и также могут привести к снижению качества продукции и производительности труда. Кроме того, изменения в структуре генерации электроэнергии в сторону использования энергии ветра и солнечных батарей, которые тоже генерируют гармоники, также приводят к тому, что применение фильтров гармоник становится всё более важным для обеспечения стабильного энергоснабжения с приемлемым качеством электроэнергии.

Снизить уровень гармоник можно с использованием пассивных фильтров (составленных из конденсаторов, реакторов и резисторов) или активных фильтров (генерирующих гармоники в противофазе к гармоникам искажений и за счёт этого их уничтожающих)

Хотя основные принципы работы активных фильтров были выработаны ещё в 1970-е годы, они стали привлекать к себе повышенное внимание в последние несколько лет, потому что появилась возможность использования биполярных транзисторов с изолированным затвором (IGBT) и цифровых сигнальных процессоров (ЦСП). При этом разница в стоимости между активными и пассивными фильтрами становится не такой большой, как в прошлом. В этой статье сравниваются преимущества и недостатки активных и пассивных технологий фильтрации

Рассматриваются пассивные и активные решения для снижения уровня гармоник и стабилизации сети, направленные на решение проблем, которые возникают в современных областях применения и имеют тенденцию к возникновению в будущем

В этой статье сравниваются преимущества и недостатки активных и пассивных технологий фильтрации. Рассматриваются пассивные и активные решения для снижения уровня гармоник и стабилизации сети, направленные на решение проблем, которые возникают в современных областях применения и имеют тенденцию к возникновению в будущем.

Применение

LC

-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемыеLC -фильтры, например, простейшийLC -контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Коротко об АЧХ фильтров.

   
Ниже приведу (напомню) некоторые особенности, влияющие на АЧХ фильтров из-за не
идеальности (некоторых) характеристик используемых ОУ и структуры фильтров. Она
по-разному проявляется в ФНЧ и ФВЧ и в зависимости от используемой структуры
фильтра. Для этого были экспериментально сняты АЧХ фильтров в диапазоне до пяти
мегагерц для каждого фильтра. Полную АЧХ фильтров приводить не буду (они
известны и описаны в соответствующей литературе), а опишу только фрагменты АЧХ,
отличающихся от идеальной АЧХ.

   
Для снятия АЧХ фильтров использовался функциональный генератор с верхней
частотой 5мГц и выходным сопротивлением 50Ом. Контроль выходного напряжения
фильтра осуществлялся осциллографом. Следует отметить, что в ряде случаев
определенный интерес представляет и поведение АЧХ фильтров выше 5мГц, однако
соответствующим генератором я не располагаю.

Как сделать своими руками

Проще всего изготовить пассивный фильтр низких частот. Это связано с тем, что он изготавливается при применении всего нескольких элементов. Среди особенностей проведения работы своими руками отметим следующее:

  • Проводятся подробные расчеты. Повысить удобство можно путем применения специальных калькуляторов, с помощью которых проводится расчет параметров основных элементов изделия.
  • Выбирается наиболее подходящая схема. Она предусматривает применение специального разделителя, который изготавливается в виде сумматора. Качественного звука в этом случае не достигнуть, но устройство прослужит долго.

Простой фильтр для 2-полосного усилителя собрать просто. Инструкция по проведению работы следующая:

  1. Подается сигнал на вход операционного усилителя.
  2. Подается сигнал на МС2.
  3. С выхода ФНЧ переводится сигнал на МС2.
  4. Блок стабилизации напряжения создается на основе резистора, конденсатора и стабилизатора.
  5. При напряжении питания менее 15В из схемы исключается резистор R11. На компонентах R1, R2, C1, C2 собирается сумматор входного сигнала. Этот элемент отключается в том случае, если подается моносигнал. Подключение источника сигнала проводится напрямую ко второму контакту.
  6. Конденсатор C7 предназначается для фильтрации выходного сигнала. Регулятор сигнала основан на R9, R10, C8.
  7. Для получения устройства потребуется печатная плата. Изготовить ее можно самостоятельно из стеклотекстиля, рекомендуемые размеры листа 2 на 4 см.
  8. Поверхность шлифуется до блеска, после чего обезжиривается. Распечатанный рисунок схемы переносится на поверхность.
  9. Выполняется травлене при применении специального состава. Лишняя медь растворяется, после чего поверхность промывается чистой водой.

Для соединения отдельных элементов проводится пайка. При правильной сборке схемы она должна заработать сразу, при этом дополнительная настройка не требуется. Если звука нет, то придется проверить надежность всех соединений. При работе есть вероятность повреждения основных элементов.

Активный фильтр

Большое широкое распространение получил активный фильтр сабвуфера. Подобная схема обладает следующими особенностями:

  • Активный элемент не нагружает акустическую систему.
  • Входной сигнал фильтруется. За счет этого есть возможность устранить шумы.
  • При правильном подходе можно гибко настроить усилитель.
  • Исходный спектр часто разделяется на несколько каналов. Схема активного фильтра позволяет выбрать низкие и средние, высокие частоты.

Изготовить самостоятельно активный фильтр можно, для этого не требуется специальное оборудование.

Пассивный фильтр

Пассивное устройство проще в изготовлении, но обладает менее привлекательными характеристиками. Его особенности заключаются в следующем:

  • Предназначено для отсеивания низких частот в заданном диапазоне.
  • Не усиливает сигнал.

В продаже встречается большое количество пассивных фильтров. Они могут прослужить в течение длительного периода и имеют относительно небольшие размеры.

Форма сигнала

Схемотехнику принято делить на две большие области: цифровую и аналоговую, по типу сигнала. Аналоговая оперирует такими параметрами, как сила тока, напряжение (иногда оно бывает отрицательным) и сопротивление. В цифровой все проще — в схеме есть только высокий и низкий логические уровни, даже без конкретных значений.

В С/С++ подобное отношение моделирует тип bool и два его состояния — true и false. Я и дальше буду использовать аналогии из языков программирования, где это уместно. Надеюсь, это поможет тебе лучше понять происходящее. Кроме того, это ярко показывает, насколько тесно все связано в цифровом мире.

Аналоговая схемотехника капризна и непредсказуема — на параметры сигнала могут влиять не только хорошо известные факторы вроде температуры и внешних наводок, но и даже такие неочевидные вещи, как вовремя не отмытый с платы флюс или окислившиеся контакты (без шуток). Цифровая схемотехника, напротив, слабо зависит от окружающих условий и вообще устойчива к шумам.

Пассивный фильтр НЧ для сабвуфера схема

Пассивный фильтр НЧ для сабвуфера своими руками можно сделать за короткое время. Схема не содержит дефицитных деталей и правильно собранная не требует настройки. Простой фильтр низких частот для сабвуфера состоит всего из двух деталей. Это катушка индуктивности и конденсатор. Для того чтобы определить электрические величины этих элементов лучше всего воспользоваться онлайн калькулятором. Для этого нужно набрать в строке поиска «Расчёт LC-фильтров. Онлайн калькулятор». Далее в окне нужно найти следующую таблицу.

Здесь достаточно указать нужную частоту среза, сопротивление нагрузки и нажать «Вычислить». Например, при сопротивлении динамика 4 Ома и частоте среза 220 Гц калькулятор выдаст ёмкость конденсатора в 255,7 микрофарад, а индуктивность 4,09 миллигенри. При сопротивлении головки 8 ом и подавлении «верхов» начиная с 250 Гц, данные будут 112,5 мкф и 7,2 мГн. Сделать фильтр низких частот для сабвуфера можно на простой печатной плате или использовать пластину из текстолита с контактными площадками.

В качестве конденсаторов используется ёмкость ближайшая по номиналу. В фильтре частот для сабвуфера можно использовать электролитические конденсаторы, но лучше поставить бумажные типа «МБГО», К73-16 или специально предназначенные для акустических систем полипропиленовые ёмкости К78-34. Для получения нужного номинала конденсаторы можно соединять параллельно. Катушки индуктивности можно купить готовые или намотать самостоятельно.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра

Вот так выглядит АЧХ этого фильтра.

Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.

LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:

В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.

Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:

Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f0— это резонансная частота контура, Гц

L — индуктивность катушки, Гн

С — емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в децибелах, либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.

f1 = 4839 Гц

f2 = 5233 Гц

Следовательно, полоса пропускания Δf=f2 – f1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.

Ее АЧХ будет выглядеть примерно вот так:

Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.

На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.

Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Видео на тему “Как работает электрический фильтр”, рекомендую к просмотру:

Фильтры для динамиков своими руками

Сделать фильтр для динамика совсем не сложно. Он состоит всего из двух элементов – конденсатора и катушки индуктивности. Рассчитать параметры радиоэлементов для пассивной схемы низкой частоты второго порядка проще всего на онлайн калькуляторе. Там можно задать желаемый уровень среза и сопротивление акустической головки. Программа выдаст требуемую ёмкость конденсатора и индуктивность катушки. Например, выбран уровень среза 150 Гц, а сопротивление динамика равно 4 Ом. Калькулятор выдаст следующие значения:

  • Ёмкость конденсатора – 187 мкф
  • Индуктивность катушки – 6,003 мГн

Требуемую ёмкость можно получить из параллельно соединённых конденсаторов К78-34, которые специально разработаны для работы в акустических системах. Кроме того есть обновлённая линейка конденсаторов аналогичного типа. Это KZKWhiteLine. В качестве недорогих аналогов, радиолюбители часто используют конденсаторы типа МБГО или МБГП.

Катушка индуктивности на 6 мГн наматывается на оправке диаметром 1 см и длиной 6 см. Поскольку катушка не имеет магнитного сердечника в качестве бобины можно использовать цилиндр из любого материала, на который для удобства намотки, нужно сделать щёчки. Для намотки используется медный провод типа ПЭЛ диаметром 1 мм. Длина проволоки 84 метра. Намотку нужно делать виток к витку.

Фильтр для автомагнитолы сделать самому

Хотя мы уже живём в XXI веке, в то время когда наши космические корабли бороздят просторы вселенной, в нашем родном социуме до сих пор существует некая каста автовладельцев, в автомобилях которых отсутствует фильтр для питания автомагнитолы. Их не смущает ни низкое качество звука издаваемого из динамиков их акустической системы, ни хрипы, ни гудения и не гул двигателя. Конечно же, все эти проблемы легко решаемы заменой старой автомагнитолы на более современную цифровую и многофункциональную имеющую процессорное управление, но, к сожалению, иногда и этот проверенный способ не помогает. Поэтому в данной статье вашему вниманию представлена инструкция о том, как своими руками выявить и устранить лишние шумы автомобильной акустики.

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

    

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Как подключить сабвуфер в автомобиль

Что нужно для подключения сабвуфера в авто.Кроме инструментов потребуются следующие изделия:

  1. Силовой кабель
  2. Межблочный экранированный провод с разъёмами RCA(Тюльпан)
  3. Колба с предохранителем
  4. Наконечники под гайку для силового провода
  5. Пластиковые втулки и стяжки

Схема подключения активного сабвуфера не представляет сложности. По красному проводу на соответствующую клемму усилителя низкой частоты подаётся «+» питания с автомобильного аккумулятора. Чтобы перегрев кабеля не вызвал возгорания изоляции в этой цепи предусмотрен предохранитель. Он защищает именно кабель, а не усилитель. В цепи питания УНЧ имеется свой предохранитель. По правилам монтажа колба с предохранителем должна находиться не дальше 15-20 см от аккумулятора. Для подключения силового кабеля к аккумулятору на его конец напаивается наконечник под гайку и одевается пластиковая термоусадка. Минусовая клемма питания усилителя соединяется с массой автомобиля. Для этого можно использовать любой болт с шайбой. Если мощность низкочастотного канала превышает 800 ватт, рекомендуется минус усилителя не соединять с массой автомобиля, а проложить от аккумулятора отдельный кабель. Таким образом,соединение сабвуфера в машине, с аккумулятором пойдёт по двум проводам.

Активный фильтр высоких частот

Активные фильтры обладают огромным преимуществом перед их пассивными «сородичами», тем более на частотах, значение которых меньше 10 кГЦ. Дело в том, что пассивные содержат катушки повышенной индуктивности и конденсаторы, которые обладают большой емкостью. Из-за этого они получаются громоздкими и дорогостоящими, и поэтому их характеристика по итогу выходит далеко не идеальной.

Большой индуктивности достигают благодаря увеличенному количеству витков катушки и использования ферромагнитного сердечника. Это освобождает ее свойства чистой индуктивности, потому что длинный провод катушки с большим числом витков имеет значимое сопротивление, а ферромагнитный сердечник подвергается влиянию температуры, что в значительной мере сказывается на его магнитных свойствах. Из-за того, что необходимо использовать большую емкость, приходится применять конденсаторы, которые обладают не лучшей стабильностью. К ним можно отнести электролитические конденсаторы. Фильтры, именуемые активными, во-многом лишены указанных выше недостатков.

Дифференциаторные и интеграторные схемы построены с применением операционных усилителей, они собой представляют простейшие активные фильтры. Когда выбирают элементы схемы по четкой инструкции, соблюдая зависимость от частоты дифференциатора, они становятся высокочастотными фильтрами, а от частоты интеграторов, напротив, – низкочастотными. Фото, объясняющие все сказанное, приведено ниже:

Влияние помех на приводное оборудование

В промышленности большая часть электропотребления приходится на вентиляторы, насосы, компрессоры, конвейеры и лебёдки, приводы технологических установок.  Механическая часть всего этого хозяйства приводится в действие асинхронными двигателями переменного тока. Режимное управление работы асинхронных двигателей, включая сокращение потребления ими электроэнергии, осуществляется с помощью специализированных устройств – преобразователей частоты. Польза их заключается в значительном облегчении пусковых режимов и работы непосредственно асинхронных двигателей. Однако иногда частотные преобразователи оказывают и нежелательное влияние на двигатель.

В виду особенной конструкции преобразователя частоты, его напряжение и ток на выходе имеют форму всплеска с огромным числом помех. Выпрямитель преобразовательного устройства, потребляя нелинейный ток, создаёт высшие гармоники, тем самым загрязняя электрическую сеть. Инвертор частотного преобразователя (ШИМ) – генерирует широкий спектр высокочастотных гармоник.

Электропитание обмоток двигателя таким нестандартным током подчас доводит до теплового и электрического пробоя изоляции обмоток двигателя, износу изоляции, увеличению степени акустических шумов работающего мотора, эрозии подшипников. Помимо этого, частотные преобразователи источают помехи в электрической сети, что оказывает отрицательное воздействие на остальное электрооборудование, питающееся от этой же электросети. Для уменьшения неблагоприятного влияния гармонических искажений, создаваемых преобразователем частоты в процессе работы, на электросеть, для двигателя и самого преобразователя частоты используется фильтрация.

Фазовый сдвиг фильтра низких частот

До сих пор мы обсуждали способ, которым фильтр изменяет амплитуду различных частотных составляющих в сигнале. Однако реактивные элементы цепи в дополнение к влиянию на амплитуду всегда вносят сдвиг фазы.

Понятие фазы относится к значению периодического сигнала в определенный момент цикла. Таким образом, когда мы говорим, что схема вызывает сдвиг фазы, то имеем в виду, что она создает смещение между входным и выходным сигналами: входной и выходной сигналы больше не начинают и заканчивают свои циклы в один и тот же момент времени. Значение сдвига фазы, например, 45° или 90°, показывает, какое было создано смещение.

Каждый реактивный элемент в цепи вводит сдвиг фазы на 90°, но этот фазовый сдвиг происходит не сразу. Фаза выходного сигнала, так же как и амплитуда выходного сигнала, изменяется постепенно по мере увеличения частоты входного сигнала. В RC фильтре нижних частот у нас есть один реактивный элемент (конденсатор), и, следовательно, схема в конечном итоге будет вводить сдвиг фазы на 90°.

Как и в случае амплитудно-частотной характеристикой, фазо-частотную характеристику легче всего оценить, изучив график, на котором частота на горизонтальной оси приведена в логарифмическом масштабе. Приведенное ниже описание дает общее представление, а затем вы можете заполнить детали, изучив график.

  • Сдвиг фазы изначально равен 0°.
  • Он постепенно увеличивается до достижения 45° на частоте среза; на этом участке характеристики скорость изменения увеличивается.
  • После частоты среза сдвиг фазы продолжает увеличиваться, но скорость изменения уменьшается.
  • Скорость изменения становится очень малой, когда сдвиг фазы асимптотически приближается к 90 °.

Рисунок 11 – Сплошная линия – это амплитудно-частотная характеристика, а пунктирная линия – это фазо-частотная характеристика. Частота среза составляет 100 кГц

Обратите внимание, что на частоте среза сдвиг фазы составляет 45°

Одноэлементные фильтры

Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами – это ведь по сути просто радиоэлементы. А вот вместе с выходным сопротивлением генератора и с сопротивлением нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в этой статье.

В основном одноэлементные фильтры применяются в аудиотехнике. В этом случае для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.

Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.

Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.

Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:

На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).

Полосовой эквалайзер в библиотеке NAudio

Для работы с звуком, звуковыми файлами различных форматов на .NET есть хорошая библиотека NAudio.

Она содержит пространство имен NAudio.Dsp с функционалом для фильтрации, свертки, гейта, огибающей, БПФ и других интересных штук.

Рассмотрим класс Equalizer (из примеров, пространство имен NAudioWpfDemo.EqualizationDemo), позволяющий производить эквализацию сигнала. Класс реализует ISampleProvider, который в функции Read(float[] buffer, int offset, int count) обрабатывает (изменяет) массив семплов buffer.

Конструктор принимает массив структуры EqualizerBand, которые описывают «полосы» эквалайзера:

Здесь Frequency — центральная частота полосы с параметром Q (Bandwidth, добротность фильтра), c усилением Gain dB.

Если заглянуть в реализацию, то каждой полосе EqualizerBand соответствует класс BiQuadFilter который используется как полосовой (Peaking) фильтр. Все фильтры изменяют сигнал используются последовательно.

Класс EqualizerBand является реализацией фильтра Баттервота, с большим выборов типов фильтров и параметрами. Если посмотреть реализацию, можно увидеть схожие формулы и коэффициенты.

Пример использования класса Equalizer вы найдете в проекте NAudioWpfDemo в классе EqualizationDemoViewModel.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector