Строение и виды микроскопов
Содержание:
- Преимущество использования световой микроскопии перед электронной
- Вариант для ребенка
- Функциональные составные микроскопа
- История создания микроскопа
- Микроскоп Захария Янссена (XVI век)
- Микроскоп Гука (середина XVII века)
- Микроскоп Галилея (начало XVII века)
- Микроскоп Левенгука (середина XVII века)
- Микроскоп Иоганна ван Мушенбрука (конец XVII века)
- Микроскоп Дреббеля (XVII век)
- Микроскоп фирмы Шевалье (XIX век)
- Электронный микроскоп (XX век)
- USB-микроскоп (конец XX века)
- Как нарисовать микроскоп карандашом поэтапно
- Задачи для учащихся
- Главным принципом работы светового микроскопа является:
- Биология
- § 6. Устройство увеличительных приборов
- Материалы необходимые для работы
- Метод световой микроскопии
- Описание исследования
- Лейкоциты преследуют бактерии
- История создания
- Популярные темы сообщений
- Строение светового микроскопа
Преимущество использования световой микроскопии перед электронной
Электронный микроскоп более востребован в научной работе, так как дает большее увеличение по сравнению со световым
Если требуется установить преимущество использования световой микроскопии перед электронной, то следует обратить внимание на подготовку биологических объектов. В электронный микроскоп нельзя изучать живые бактерии, клетки
В качестве примера рассмотрим тестовое задание: «Выберите преимущество использования световой микроскопии перед электронной». Формулировка теста или вопроса может несколько отличаться. Во всех случаях надо уметь различать возможности световой микроскопии и особенности электронного микроскопа.
Результат выполнения задания «Отметьте преимущество использования световой микроскопии перед электронной»:
Предлагаемые ответы тестового задания «Найдите преимущество использования световой микроскопии перед электронной»:
- большее разрешение;
- возможность видеть живые объекты;
- дороговизна метода;
- сложность приготовления препарата.
Правильный ответ — 2) возможность видеть живые объекты.
Ответы 1, 3, 4 неверные, так как являются характеристиками электронной микроскопии. Разрешение электронного микроскопа в тысячи раз превосходит аналогичный показатель светового микроскопа. Используются сложные манипуляции для приготовления препарата. Изучаемый объект сначала фиксируют специальными веществами, затем обезвоживают и заливают пластмассой. Электронный микроскоп — дорогостоящий прибор, его приобретают и устанавливают в крупных исследовательских заведениях.
Вариант для ребенка
Чтобы у ребенка получилось выполнить микроскоп, специалисты рекомендуют выполнять его в профиль, без изображения объема. Линии будут максимально геометричные, то есть представлять из себя горизонтальные, вертикальные и наклонные прямые, а также регулярные кривые, то есть окружности и их части, возможно эллипсы.
Далее поэтапно выполняются следующие шаги:
- Нарисовать основание микроскопа. Она представляет из себя трапецию с достаточно длинными основаниями и небольшой высотой.
- Сверху с правой стороны, отступая небольшой промежуток от правого угла нарисовать квадрат, который будет фиксатором стойки микроскопа.
- С левой стороны нарисовать плоский прямоугольник по верхней плоскости трапеции.
- Следующий шаг – это пририсовывание к правому квадрату двух окружностей, чьи диаметры будут немного отличаться. Разница между диаметрами – это толщина дужки микроскопа.
- Окружность вырисовывается сначала полностью. А потом при помощи ластика стирается левая верхняя четверть для двух окружностей.
- По нижнему краю разрезанные окружности называется горизонтальный прямоугольник с нижней частью основания.
- По правой стороне вырисовывается небольшой диагонально расположенный прямоугольник с изображением винтового крепления. На нем находится винтовое крепление. Его пририсовать там, где окружность крепится к нижней стойке.
- На следующем этапе вырисовывается труба микроскопа. Она фиксируется к верхней части окружности к крепежному элементу.
- Труба – это не просто прямоугольник. В верхней части она оснащена окуляром. В нижней его части необходимо нарисовать два прямоугольника, которые будут изображать выдвигающиеся линзы – так называемая лупа.
- На следующем этапе можно предложить ребенкураскрасить микроскоп в любые, максимально понравившиеся цвета.
Рисунок достаточно милый, но одновременно с тем в своей технике исполнения он не сложен. Поэтому, изучив строение прибора, ребенку легко будет воспроизвести его на виде сбоку.
Функциональные составные микроскопа
Данное оборудование содержит в себе три главные составные части: осветительная, воспроизводящая и визуализирующая. Осветительная составная микроскопа необходима для того, чтоб воссоздавать поток света так, чтоб другие части прибора, как можно точнее делали свою работу. Осветительная часть оборудования для проходящего светового потока находится непосредственно за препаратом, если микроскоп прямой, а если микроскоп инвертированный, то перед объектом и поверх объектива.
Осветительная составная прибора содержит в себе источник освещения, который может быть представлен лампой, или же электрическим блоком питания, а также всевозможную механическую оптику, в которую входят: конденсоры, коллекторы, полевые и апертурные регулируемые и ирисовые диафрагмы.
Воспроизводящая составная микроскопа нужна для того, чтоб воспроизводить объект непосредственно в горизонтали картинки с необходимым для рассмотрения визуальными качествами и увеличением. Это значит, что воспроизводящая составная нужна для такого отображения картинки в окуляре, какое наиболее точно и детально показывает объект с определённым разрешением для оптики микроскопа передачей цвета и контрастности.
С помощью воспроизводящей части удаётся добиться первой ступени увеличения картинки и находится она за объектом до горизонтали изображения прибора. Воспроизводящие части прибора также имеют объективы, и промежуточные системы стационарной оптики.
Сегодня это оборудование работает с помощью специальных систем объективов и оптики, которые скорректированы на отметку бесконечности. Для этого в приборах используют тубусные системы, благодаря которым параллельные лучи света, выходящие через объектив, соединяются в плоскости картинки в микроскопе.
Визуализирующие составные прибора необходимы для того, чтоб получать настоящую картинку исследуемого предмета на сетчатке, пластине, пленке, на мониторе с большой второй степенью увеличения.
Визуализирующие части в микроскопе находится между камерой или сетчаткой глаза, а также горизонталью картинки объектива. Эти части содержат в себе визуальные насадки монокулярного, бинокулярного или тринокулярного типа со специальными системами наблюдения, которые представляет собой окуляры, работающие по принципу лупы.
Помимо этого, визуализирующая часть микроскопа также содержит в себе дополнительные увеличительные системы, всевозможные насадки для проекции, включая также и дискуссионные для нескольких исследователей. Также система включает в себя приспособления для рисования, проведения анализа, а также фиксирования картинки с определёнными согласующими частями.
История создания микроскопа
Создание микроскопа имеет многовековую историю. Прибор прошел путь от простой трубки, в которую едва что-то можно было рассмотреть, до электронного устройства огромной мощности с большими увеличительными возможностями.
Один из первых микроскопов
Поскольку ранее наукой интересовались богатые люди, заказанные ими единичные экземпляры микроскопов украшались дорогими камнями и золотом, футляры для их хранения изготавливались из слоновой кости и ценного дерева.
В настоящее время существует множество микроскопов, они находят применение в разных сферах деятельности человека: медицине, промышленности, археологии, электронике и др.
Микроскоп Захария Янссена (XVI век)
Первый микроскоп создал нидерландский мастер по изготовлению очков Захарий Янссен. Это была обычная трубка с двумя линзами на концах. Настройку изображения выполняли, выдвигая трубку (тубус). Этот простой микроскоп стал основой для создания более сложных приборов.
Микроскоп Гука (середина XVII века)
Роберт Гук собрал очень удобную модель микроскопа: тубус можно было наклонять. Чтобы получить хорошее освещение, ученый придумал специальную масляную лампу и стеклянный шар, который наполнялся водой.
Микроскоп Галилея (начало XVII века)
Галилео Галилей доработал трубу Янссена, заменив одну из выпуклых линз на вогнутую. При выдвижении тубуса этот микроскоп служил еще и телескопом. Предположительно микроскоп Галилея изготовил мастер Джузеппе Кампаньи из дерева, картона и кожи и поставил на трехногую подставку из металла.
Микроскоп Левенгука (середина XVII века)
Изобретение Левенгука представляло собой две небольшие пластины, между которыми крепилась крошечная линза, а исследуемый объект помещался на иглу. Передвигать иглу можно было с помощью специального винта. Микроскоп мог увеличить изображение в 300 раз, что было немыслимо для той поры.
Микроскоп Иоганна ван Мушенбрука (конец XVII века)
Иоганн ван Мушенбрук создал необычный и простой в использовании микроскоп. Линза и держатель крепились с помощью подвижных соединений, названных «орехами Мушенбрука». Это придавало микроскопу большую гибкость.
Микроскоп Дреббеля (XVII век)
Микроскоп Дреббеля — это позолоченная труба, которая находилась в строго вертикальном положении. Работать за таким микроскопом было не очень удобно.
Микроскоп фирмы Шевалье (XIX век)
Наука шагнула далеко вперед. Фирма Шевалье стала производить микроскопы, объектив которых состоял уже не из одной простой, а из многих специально отшлифованных ахроматических линз. Это позволяло достигать большой мощности и передавать изображение без искажений и более четко.
Электронный микроскоп (XX век)
Появляются электронные микроскопы. Ученые заменили пучок света на поток микрочастиц — электронов. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, они управляют движением электронов с помощью магнитного поля.
USB-микроскоп (конец XX века)
USB-микроскоп — это небольшой цифровой прибор, который присоединяется к компьютеру через USB-порт. Вместо окуляра — маленькая веб-камера, которая посылает изображение прямо на монитор компьютера.
Как нарисовать микроскоп карандашом поэтапно
Микроскопом пользуются в учебных заведениях, медицине и научных учреждениях. Он применяется для детального рассмотрения очень малых объектов, которые невидимы обычным зрением.
Если вы хотите научиться правильно рисовать этот непростой прибор, потребуется сначала получить информацию о способах и нюансах подобной работы. Из этой статьи вы получите подробную информацию о том, как нарисовать микроскоп с помощью карандаша доступным способом. Пользуясь нижеописанным поэтапным руководством, вы сможете получить точный рисунок оптического прибора – микроскопа.
Как нарисовать микроскоп карандашом (поэтапно)
- Этап 1. Сначала нарисуйте зрительную трубку или тубус, предназначенный для наблюдения за объектом. Существуют разновидности с одной и двумя трубками. Изобразите прямоугольник, слегка закруглённый на конце, с небольшим расширением. Тубус должен вставляться в основу, которая крепится к диску со штативом внизу
- Этап 2. Нарисуйте диск с объективами. Полученный овал на рисунке – это круг в реальности, с вытянутой передней частью. В диске вставлено от трёх до четырёх объективов. Они содержат линзы различной увеличительной кратности (способности). Именно объективы дают необходимое увеличение предмета. Нарисуйте объектив цилиндрической формы, немного сузив к концу. Это место, где непосредственно находятся линзы
- Этап 3. Прорисуйте заднюю часть микроскопа от основания тубуса. Это так называемая ножка, которая соединяет платформу и тубус микроскопа. Расчертите прямыми линиями, чтобы передать отчётливые очертания ножки
- Этап 4. Прорисуйте предметный столик с держателями. Это маленькие пластинки, которые закрепляются винтами. Их, как правило, две и они удерживают предметные стекла. На них размещается объект для изучения. В нижнем разрезе стола виден винт. Необходим для удаления и приближения стола от объектива
- Этап 5. Прорисуйте заготовку – место, куда должна вставляться ножка микроскопа. Эта фигура похожа на коробку. С обоих боков нанесите крупные винты для опускания и поднятия ножки оптического прибора
- Этап 6. Нарисуйте платформу (основание) прибора, место, на котором он стоит и крепится. На основе изобразите подсветку — небольшой фонарик или лампу
- Этап 7. С обеих сторон от выступа с подсветкой дорисуйте основу прибора с ножками внизу. На боку, в прямоугольнике располагается кнопка выключения и включения подсветки
- Этап 8. Нанесите штрихи на винтах и подсветке. Именно таким способом получится передать их ребристую текстуру.
Этап 9. Удалите все лишние вспомогательные линии. При желании раскрасьте полученный черно-белый рисунок. Выделите светлые и тёмные области эскиза.
Ознакомтесь внимательно с поэтапной инструкцией для того, чтобы понять, как нарисовать микроскоп просто и хорошо.
Необходимые инструменты и материалы
Перед тем как нарисовать микроскоп, вам потребуется подготовить канцелярские и вспомогательные инструменты, нео
бходимые для работы:
- Белый лист бумаги.
- Грифельный карандаш.
- Ластик.
- Изображение или фотографию микроскопа.
- Несколько цветных карандашей тёмных оттенков.
Как нарисовать световой микроскоп
- Подготовьте образец – изображение или фотографию светового микроскопа.
- Начните с прорисовки окуляра. Изобразите его в виде овала (вид сбоку). Нарисуйте внутри него другой овал, несколько меньше. Это отверстие с линзой, при помощи которого рассматривают изучаемый объект.
- Окуляр размещается в конце трубки.
Изобразите его двумя параллельными линиям, а противоположный конец наметьте дугой.
- В призму входит трубка, она расположена в кожухе. Для изображения призмы изобразите прямоугольный треугольник ниже дуги. Для придания объёма начертите две линии по диагонали вправо и вверх.
Прервите верхнее изображение трубки, и соедините линии между собой.
- Изобразите объектив в виде небольшого цилиндра. Под ним нарисуйте подставку овальной формы.
6. Вверху нарисуйте небольшой прямоугольный предметный столик.
При желании можете изобразить боковое зеркало и три вставных объектива на поворотной турели (место, где крепится объектив или объективы).
Спорные факты
По мнению историков, создателем микроскопа считается Антони Ван Левенгук. На протяжении многих лет, до середины XVIII столетия его изобретение пользовалось популярностью.
Однако существует мнение, что раньше Левенгука, в 1661 году, Роберт Гук усовершенствовал образец Гюйгенса – добавил к прототипу микроскопа дополнительную линзу. Именно это решило вопрос чёткости изображения. Мы не знаем достоверно, кто изобрёл микроскоп.
Однако можем полноценно оценить роль изобретения для всего мира в целом.
Задачи для учащихся
Основные задачи:
- Формирование желания изучать природные объекты.
- Развитие интеллектуальных умений и когнитивных способностей.
- Мотивация к изучению и исследованию, а также получению знаний, умений и навыков по предмету «Биология» и других естественных наук.
Внепредметные (метапредметные) задачи:
- Проведение исследовательской деятельности (самостоятельно или по парам).
- Умение анализировать и искать информацию в различных источниках.
- Навык рисования схематических изображений, увиденных в микроскопе, их дальнейший анализ и расшифровка.
- Овладение методами наблюдения, анализа и моделирования.
- Использование коммуникативных навыков и речевого аппарата для формулирования вывода по исследовательской деятельности.
- Умение учитывать регулятивные особенности и выполнять задание в установленные сроки.
Предметные задачи:
- Получение основных и самых важных представлений о клетке.
- Умение сравнивать биологические объекты (в данном случае растительную и животную клетки).
- Навык описывать биологический объект, оперируя терминами и описаниями биологических явлений.
- Знание основных клеточных структур и умение описывать их функции.
- Умение работать с микроскопом.
- Приобретение навыка подготовки рабочего места, приготовления микропрепарата и выполнения всех ступеней подготовительного этапа.
Главным принципом работы светового микроскопа является:
Увеличение изображения размещенного на предметном столике объекта исследования посредством прохождения через него лучей света с дальнейшим попаданием их на систему линз объектива. Такую же роль выполняют линзы окуляра, которыми пользуется исследователь в процессе изучения объекта. Нужно отметить, что световые микроскопы тоже не одинаковы. Разница между ними определяется количеством оптических блоков. Различаются монокулярные, бинокулярные или стереомикроскопы с одним или двумя оптическими блоками. Подсветка так же может отличаться, на более бюджетных моделях устанавливается зеркало, а на более дорогих микроскопах как правило имеется светодиодная подсветка, которая более удобна для использования микроскопа при отсутствии освещения. Так же на бюджетных моделях подсветка может быть нерегулируемая, что может пагубно повлиять на качество изучения объектов. Для изучения прозрачных и непрозрачных объектов на некоторых микроскопах имеется нижняя и верхняя подсветка. Прибор может быть сделан полностью из пластика или с алюминиевым корпусом, преимущество пластиковых корпусов в их небольшом весе и более дешевой цене, но микроскопы с алюминиевым корпусом, конечно, более долговечны.
Отзывы наших покупателей показывают, что можно купить недорогой микроскоп и остаться довольным покупкой. Так некоторые родители покупают более дорогостоящий прибор, но ребенку он просто не интересен, потому как нужно понимать, что для ребенка не главное долговечен он или нет, ему более интересен микроскоп красивый и с большой комплектацией, например, микроскопы LEVENHUK LABZZ, а если еще и цвет любимый, то это просто мечта. Так что посоветуйтесь перед покупкой с ребенком если не хотите испортить подарок!
Биология
§ 6. Устройство увеличительных приборов
- Какие увеличительные приборы вы знаете?
- Для чего их применяют?
Если разломить розовый, недозревший, плод томата (помидор), арбуза или яблока с рыхлой мякотью, то мы увидим, что мякоть плодов состоит из мельчайших крупинок. Это клетки. Они будут лучше видны, если рассмотреть их с помощью увеличительных приборов — лупы или микроскопа.
Устройство лупы. Лупа — самый простой увеличительный прибор. Главная его часть — увеличительное стекло, выпуклое с двух сторон и вставленное в оправу. Лупы бывают ручные и штативные (рис. 16).
Рис. 16. Лупа ручная (1) и штативная (2)
Ручная лупа увеличивает предметы в 2—20 раз. При работе её берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета наиболее чётко.
Штативная лупа увеличивает предметы в 10—25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке — штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.
Устройство лупы и рассматривание с её помощью клеточного строения растений
- Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?
- Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?
- Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?
Устройство светового микроскопа. С помощью лупы можно рассмотреть форму клеток. Для изучения их строения пользуются микроскопом (от греческих слов «микрос» — малый и «скопео» — смотрю).
Световой микроскоп (рис. 17), с которым вы работаете в школе, может увеличивать изображение предметов до 3600 раз. В зрительную трубку, или тубус, этого микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр (от латинского слова «окулус» — глаз), через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол.
На нижнем конце тубуса помещается объектив (от латинского слова «объектум» — предмет), состоящий из оправы и нескольких увеличительных стёкол.
Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещенного с помощью этого зеркала.
Рис. 17. Световой микроскоп
Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объекте. Например, если окуляр даёт 10-кратное увеличение, а объектив — 20-кратное, то общее увеличение 10 х 20 = 200 раз.
Порядок работы с микроскопом
- Поставьте микроскоп штативом к себе на расстоянии 5—10 см от края стола. В отверстие предметного столика направьте зеркалом свет.
- Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.
- Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1—2 мм от препарата.
- В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.
- После работы микроскоп уберите в футляр.
Микроскоп — хрупкий и дорогой прибор: работать с ним надо аккуратно, строго следуя правилам.
Устройство микроскопа и приёмы работы с ним
- Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.
- Познакомьтесь с правилами пользования микроскопом.
- Отработайте последовательность действий при работе с микроскопом.
Вопросы
- Какие увеличительные приборы вы знаете?
- Что представляет собой лупа и какое увеличение она даёт?
- Как устроен микроскоп?
- Как узнать, какое увеличение даёт микроскоп?
Задания
Выучите правила работы с микроскопом.
Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.
Знаете ли вы, что…
Световые микроскопы с двумя линзами были изобретены в XVI в. В XVII в. голландец Антони ван Левенгук сконструировал более совершенный микроскоп, дающий увеличение до 270 раз, а в XX в. был изобретён электронный микроскоп, увеличивающий изображение в десятки и сотни тысяч раз.
Материалы необходимые для работы
Перед тем, как приступить к рисованию, следует подготовить необходимое:
- Простые карандаши разной твердости. Они нужны, чтобы создавать – тонкие линии наброска и наводить контур. Желательно учесть, что твердый грифель маркируется латинской буквой H, мягкие карандаши имеют маркировку буквой B. при этом цифра, стоящая перед буквой, указывает насколько мягок или, наоборот, тверд грифель.
- Цветные карандаши. Бывают простые или акварельные. Отличаются принципом нанесения. Обычными просто накладывается штриховка. По акварельным, после закрашивания фона, нужно пройтись сверху кисточкой, смоченной в воде.
- Если планируется выполнение цветного рисунка, нужно подготовить соответствующие краски – акварель или гуашь.
- Подобрать правильно бумагу. Необходимо помнить – для красок и карандашей тип бумаги должен быть разным.
- Линейка, кому не удается наносить прямые линии корректно.
- Можно воспользоваться циркулем для срисовывания кругов.
- Ластики разной плотности.
Метод световой микроскопии
Предельная разрешающая способность человеческого глаза составляет около 0,1 мм. Это понятие отражает минимальное расстояние, на котором 2 соседние точки определяются как отдельные объекты. Микрочастицы, клеточные структуры и дефекты поверхности имеют размер менее 100 мкм, поэтому для их исследования требуется специальное оборудование.
Историческая справка
Первые оптические микроскопы были изобретены в XVI-XVII вв. Первым, кто заметил увеличительный эффект комбинации из нескольких линз, был венецианский врач Джироламо Фракасторо. В 1609 г. Галилео Галилей представил собственный вариант прибора с 2 стеклами: выпуклым и вогнутым. Первое устройство называлось оккиолино (occhiolino).
Через 10 лет после этого голландский ученый Корнелиус Дреббель усовершенствовал конструкцию, использовав для объектива 2 выпуклые линзы.
Практическое применение микроскопа началось с конца XVII в., когда Антони Ван Левенгук использовал собственное оптическое устройство для исследования биологических структур. Его микроскоп содержал всего одно мощное стекло, что уменьшало количество дефектов картинки.
Приборы Левенгука позволяли увеличить изображение в 275 раз и рассмотреть строение бактерий, дрожжей, эритроцитов, одноклеточных микроорганизмов и насекомых.
Популяризации микроскопии способствовала и книга английского исследователя Роберта Гука, которая вышла в 1664 г. В ней ученый ввел термин «клетка» и опубликовал гравюры некоторых микрообъектов.
Методы микроскопии выбираются в зависимости от характера и свойств изучаемых объектов.
В течение следующих столетий конструкция оптического микроскопа непрерывно совершенствовалась. Несмотря на то, что в первой половине XX в. были изобретены электронные приборы, которые позволяли рассмотреть нанообъекты, световой метод не теряет своей популярности. В 2006 г. группа немецких ученых разработала оптическое устройство под названием наноскоп, которое обладает разрешающей способностью 10 нм.
Подробно о принципе действия
Принцип работы оптического микроскопа основывается на прохождении прямого или отраженного луча света через систему линз.
Объектив прибора содержит до 14 стекол. При прохождении светового пучка через эту часть устройства изображение увеличивается до 100 раз, а при прохождении окуляра — в 20-24 раза. Выпуклые и вогнутые стекла позволяют сфокусировать картинку на сетчатке или приспособлениях для документирования информации.
Увеличивающие линзы имеют 2 дефекта. Сферическая аберрация мешает фокусировать сразу все поле исследования, а хроническая приводит к появлению яркой каймы по контуру изображения. Чтобы компенсировать дефекты, окуляр и объектив оснащаются корригирующими стеклами.
Описание исследования
Лабораторная работа может выглядеть следующим образом (некоторые моменты исследования могут быть изменены в зависимости от требований и условий работы):
Название: Исследование микропрепарата кожицы лука под микроскопом.
Цель исследования: изучение структуры клетки кожицы лука, функций органелл.
Материалы: лук, микроскоп, предметное стекло, покровное стекло, йод, пипетка, салфетка, фильтровальная бумага, пинцет, нож, препаровальная игла.
План проведения лабораторной работы
- Подготовительный этап.
- подготовить и почистить луковицу, разрезать ножом и снять плёнку (защитный слой) с помощью пинцета с одной из чешуек лука;
- настроить микроскоп;
- протереть салфеткой предметное стекло.
- Основной этап.
- поместить один слой эпителия луковых клеток на предметное стекло, используя препаровальную иглу и, если это необходимо, пинцет (не рекомендуется делать это рукой);
- с помощью пипетки капнуть йод на предметное стекло, чтобы окрасить эпителий лука для лучшего наблюдения микропрепарата (излишки йода можно удалить фильтровальной бумагой, не повреждая эпителия лука);
- разместить на окрашенной кожице лука покровное стекло и удалить все пузырьки с поверхности исследуемого объекта;
- поместить готовый микропрепарат на предметный столик;
- рассмотреть готовый микропрепарат под различными увеличениями (х4, х10, х40) с широко открытой диафрагмой;
- медленно увеличивать и уменьшать интенсивность света, закрывая диафрагму, наблюдая за изменением изображения для получения идеальных условий изучения объекта.
- Заключительный этап.
- зарисовать увиденное изображение;
- проанализировать рисунок;
- отметить на рисунке и описать увиденные органеллы;
- поработать с терминологическим аппаратом и записать все необходимые термины;
- написать вывод к работе.
Лейкоциты преследуют бактерии
Лейкоциты в переводе с греческого означают белые клетки крови. Также эти клетки крови называют белыми кровяными тельцами. Эти клетки захватывают попавшие в организм бактерии и обезвреживают их. Именно поэтому главная роль лейкоцитов в том, чтобы защитить наш организм от заболеваний.
Лейкоциты по своему строению напоминают белые или бесцветные шарики. Каждый «шарик» – это одна клетка. В 1 мл крови их примерно 5000-8000 шт., и это число может варьироваться в зависимости от того, сыт человек или голоден, работает ли он физически или отдыхает, болен – здоров. На количество лейкоцитов влияет даже время суток. Красные и белые кровяные тельца вырабатываются в красном веществе костного мозга, лимфатических узлах и селезенке.
История создания
Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.
Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.
А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.
А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.
Старинные микроскопы.
Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.
А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.
Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.
Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.
Так выглядел микроскоп Робета Гука, изображение из «Микрографии».
И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы
Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа
Популярные темы сообщений
-
Творчество Валентина Катаева
В.П.Катаев начал писать с 9 лет. Делил тетрадь на две колонки и записывал все, что придумывал: стихи, рассказы, повести, элегии.
-
Воронежский заповедник
Воронежский заповедник насчитывает площадь 31,1 тыс. га, и находится в грани Воронежской и Липецкой областей. Основан в 1927 г. с целью сбережения редких экосистем лесостепи и с целью исследования биологии и экологии наилучшего метода разведения
-
Костяное кружево
Костяным кружевом принято называть резьбу по кости, которая относится к народным промыслам. Этот вид творчества известен давно, особенно он популярен среди жителей севера. Резьба по кости имеет многовековую историю. Первые изделия были незамысловатыми,
Строение светового микроскопа
Чтобы ознакомиться со строением клетки и рассмотреть её составные части, нужно использовать увеличительное оборудование, одним из которых является световой микроскоп.
Первые микроскопы были похожи на увеличительные стёкла, и в них использовалось только одно стекло или линза из полированного горного хрусталя.
Одним из первых создателей (1610 г.) микроскопа считают физика и математика Галилео Галилея.
Большие технические возможности и лучшее качество изображения можно получить при помощи микроскопа с двумя линзами. Создание такого прибора связано с именем английского физика Роберта Гука (1665 г.). Этот микроскоп увеличивал в 30 раз.
Для своего времени превосходного мастерства в изготовлении микроскопов достиг нидерландский купец Антони ван Левенгук ( 1632 – 1723 ). Он умел производить линзы, увеличивающие в 200 – 270 раз
Линзы закреплялись на специальном штативе, так как, чтобы достичь такого увеличения, важно, чтобы исследуемый объект находился точно напротив линзы и на определённом расстоянии от неё. За свою жизнь Левенгук изготовил более 200 микроскопов